43 research outputs found

    Expression and Site-Directed Mutagenesis of Type III Polyketide Synthases

    Get PDF
    Natural products are a well-established source of drugs, and evolution has yielded polyketides such as leinamycin and iso-migrastatin that have demonstrated anti-tumor activity. Polyketides are large metabolites with a high degree of chemical variability and are commonly produced by soil bacteria. Polyketide synthases (PKS) exist as three different archetypes, and the reaction mechanisms of ketosynthases from all archetypes is not understood. Type III PKSs exist as an independently functioning ketosynthase (KS), which primarily use coenzyme A (CoA), with some exceptions, for the biosynthesis of polyketides. We elected to focus our studies on ketosynthases, because they are responsible for forming the carbon-carbon bonds seen in polyketides. To study these Type III PKS KS, we expressed Streptomyces coelicolor germicidin synthase (Gcs) and tetrahydroxynaphthlene synthase (THNS) in E. coli and mutant versions where the catalytic active cysteine was changed to a serine or glutamine. In previous studies, serine slowed the overall progress of the reaction, and glutamine abolished carbon-carbon bond formation but promoted malonyl-CoA decarboxylation. We verified our mutations using a third party organization’s fluorescent sequencing by dye termination services, as well as confirmed that an acceptable level of expression of our protein is occurring in our BL21 cell lines using SDS-PAGE and Fast Protein Liquid Chromatography (FPLC). Now that we have successfully expressed and mutated our protein, we can move forward and use substrate mimics in conjunction with our mutants to further understand the catalytic mechanism of ketosynthases

    Strain prioritization and genome mining for enediyne natural products

    Get PDF
    The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. IMPORTANCE Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family

    Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    Get PDF
    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 Å, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein–ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics

    Crystal structure of SgcJ, an NTF2-like superfamily protein involved in biosynthesis of the nine-membered enediyne antitumor antibiotic C-1027

    Get PDF
    Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us to propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. These findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis

    GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

    Get PDF
    Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27 581 individuals of European descent over 65 years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5 × 10−8) and 39 suggestive (P-value< 5 × 10−5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (β = 0.47, SE = 0.08, P-value = 5.20 × 10−10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-β (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength

    Two-state conformational behavior in protein active centers

    Get PDF
    xiv, 82 p., ill. (some col.)Cellular processes are carried out by proteins, which often utilize conformational changes for function. In theory, conformational changes can be harnessed to promote, prevent or monitor cellular processes. Such changes in protein active centers require perturbations through interactions with other proteins, small molecules or through energy input into the system, for example light. The work presented incorporates rational design and crystallographic elucidation of two-state conformational changes in two proteins, green fluorescent protein (GFP) and malate synthase (MS). GFP indicators were previously developed to quantitate the thiol/disulfide redox status within cells. Cysteine residues were introduced in close proximity on the surface of GFP and allow the formation of a disulfide bond. The indicators provide a fluorescent readout of the ambient thiol/disulfide equilibrium, however thermodynamic studies showed the resulting thiol/disulfide to be unusually stable (-287 mV) in comparison to the cellular redox buffer glutathione (-240 mV). In order to produce a family of redox indicators suitable for use in less reducing environments, amino acids were inserted near the introduced cysteine pair in order to destabilize the disulfide. The resulting family of redox indicators, termed roGFP-iX, exhibit midpoint potentials in the more desirable range of -229 to -246 mV. Crystallographic analysis indicates that roGFP-iX indicators undergo much larger two-state conformational changes than the original indicators. Surprisingly, a cis-peptide was discovered between the cysteine and the inserted residue which in combination with the conformational changes helps to explain the reduced stability of the disulfide. Malate synthase is an important virulence factor for certain microbes and carries out the Claisen condensation between glyoxylate and acctyl-CoA to produce malate. Crystal structures of Mycobacterium tuberculosis and Escherichia coli malate synthase isoform G had previously been determined with substrates or products bound. To determine the conformational changes necessary for substrate binding and product release, crystal structures of Escherichia coli malate synthase isoform A were determined in both the apo and acetyl-CoA/inhibitor bound forms. The crystallographic models revealed two-state conformational changes in the part of the active-site loop necessary for substrate binding, which has important implications for drug design. This dissertation includes my unpublished co-authored materials.Adviser: S. James Remingto

    Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix

    No full text
    Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3′-untranslated region of the <i>DMPK</i> gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5′CUG/3′GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt

    Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix

    No full text
    Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3′-untranslated region of the <i>DMPK</i> gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5′CUG/3′GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt

    Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix

    No full text
    Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3′-untranslated region of the <i>DMPK</i> gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5′CUG/3′GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt

    Utilizing the GAAA Tetraloop/Receptor To Facilitate Crystal Packing and Determination of the Structure of a CUG RNA Helix

    No full text
    Myotonic dystrophy type 1 (DM1) is a microsatellite expansion disorder caused by the aberrant expansion of CTG repeats in the 3′-untranslated region of the <i>DMPK</i> gene. When transcribed, the toxic RNA CUG repeats sequester RNA binding proteins, which leads to disease symptoms. The expanded CUG repeats can adopt a double-stranded structure, and targeting this helix is a therapeutic strategy for DM1. To improve our understanding of the 5′CUG/3′GUC motif and how it may interact with proteins and small molecules, we designed a short CUG helix attached to a GAAA tetraloop/receptor to facilitate crystal packing. Here we report the highest-resolution structure (1.95 Å) to date of a GAAA tetraloop/receptor and the CUG helix it was used to crystallize. Within the CUG helix, we identify two different forms of noncanonical U-U pairs and reconfirm that CUG repeats are essentially A-form. An analysis of all noncanonical U-U pairs in the context of CUG repeats revealed six different classes of conformations that the noncanonical U-U pairs are able to adopt
    corecore